Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix

We study scalar multivariate non-stationary subdivision schemes with a general integer dilation matrix. We characterize the capability of such schemes to reproduce exponential polynomials in terms of simple algebraic conditions on their symbols. These algebraic conditions provide a useful theoretical tool for checking the reproduction properties of existing schemes and for constructing new sche...

متن کامل

Stationary subdivision schemes reproducing polynomials

A new class of subdivision schemes is presented. Each scheme in this class reproduces polynomials up to a certain degree. We find that these schemes extend and unify not only the well-known Deslauriers–Dubuc interpolatory scheme but the quadratic and cubic B-spline schemes. This paper analyze their convergence, smoothness and accuracy. It is proved that the proposed schemes provide at least the...

متن کامل

A New Class of Non-stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials

We present a new class of non-stationary, interpolatory subdivision schemes that can exactly reconstruct parametric surfaces including exponential polynomials. The subdivision rules in our scheme are interpolatory and are obtained using the property of reproducing exponential polynomials which constitute a shift-invariant space. It enables our scheme to exactly reproduce rotational features in ...

متن کامل

Analysis of Non-stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials

In this study, we are concerned with non-stationary interpolatory subdivision schemes with refinement rules which may vary from level to level. First, we derive a new class of interpolatory non-stationary subdivision schemes reproducing exponential polynomials. Next, we prove that non-stationary schemes based on the known butterfly-shaped stencils possess the same smoothness as the known Butter...

متن کامل

Decompositions of trigonometric polynomials with applications to multivariate subdivision schemes

We study multivariate trigonometric polynomials satisfying the “sum-rule” conditions of a certain order. Based on the polyphase representation of these polynomials relative to a general dilation matrix, we develop a simple constructive method for a special type of decomposition of such polynomials. These decompositions are of interest in the analysis of convergence and smoothness of multivariat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2013

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-013-0587-8